Fizikçiler 1950’lerden bu yana Güneş’e güç veren füzyon reaksiyonundan yararlanmaya çalışıyor, ancak aralık ayına kadar hiçbir grup reaksiyondan tükettiğinden daha fazla enerji üretememişti – bu aynı zamanda ateşleme olarak da bilinen bir durum.
Füzyon deneyi tekrarlandı, daha yüksen enerji üretildi
ABD Enerji Bakanı Jennifer Granholm aralık ayında ateşleme başarısını “21. yüzyılın en etkileyici bilim başarılarından biri” olarak tanımlamıştı. Bu deneyde reaksiyon yaklaşık 3.15 megajul üretti ki bu da lazerlerdeki 2.05MJ’ün yaklaşık yüzde 150’sine denk düşüyor. Temmuz deneyinden elde edilen ilk verilerin 3.5MJ’den daha yüksek bir enerji çıktısı sağladığı belirtiliyor ancak net rakam şimdilik belli değil. Bu arada 3.5MJ enerjiyi kafanızda canlandırabilmek için bunun, ev tipi ütüyü bir saat boyunca çalıştırmak için gerekli olan enerji miktarı olduğunu söyleyelim.
Net enerji kazancı elde etmek on yıllardır ticari füzyon güç istasyonlarının mümkün olduğunu kanıtlamak için çok önemli bir adım olarak görülüyordu. Ancak hala aşılması gereken birkaç engel var. Bu bağlamda enerji kazancı sadece üretilen enerji ile lazerlerdeki enerjiyi karşılaştırır, sisteme güç sağlamak için şebekeden çekilen toplam enerji miktarını değil, ki bu çok daha yüksektir. Bilim insanları ticari füzyon için lazerlerdeki enerjinin 30 ila 100 katını üretecek reaksiyonlar gerektiğini tahmin ediyor.
Füzyon enerjisi de ne?
Nükleer enerjiyi dünya üzerinde herhalde duymayan kimse yoktur. Türkiye’nin ilk nükleer enerji tesisi Akkuyu NGS gibi tüm nükleer enerji reaktörleri aslında fisyon sürecini temel alıyor. Fisyon ve füzyon, nükleer enerji üretiminde kullanılan iki farklı süreçtir.
Biraz daha detay verelim. Füzyon, iki hidrojen izotopunun – genellikle döteryum ve trityum – atom çekirdeklerinin birleşerek helyum ve nötron şeklinde büyük miktarda enerji açığa çıkaracak kadar aşırı sıcaklıklara ısıtılmasıyla elde ediliyor.
Birçok bilim insanı füzyon enerji santrallerinin hala onlarca yıl uzakta olduğuna inansa da, teknolojinin potansiyelini görmezden gelmek zor. Füzyon reaksiyonları karbon yaymaz, uzun ömürlü radyoaktif atık üretmez, patlama vb. riskler açığa çıkarmaz ve küçük bir kap hidrojen yakıtı teorik olarak bir eve yüzlerce yıl enerji sağlayabilir.
Manyetik hapsetme olarak bilinen ve üzerinde en çok çalışılan yaklaşımda, yakıt Güneş’ten daha yüksek sıcaklıklara kadar ısıtılırken onu yerinde tutmak için devasa mıknatıslar kullanılıyor. NIF, eylemsiz hapsetme adı verilen farklı bir süreç kullanıyor ve bu süreçte dünyanın en büyük lazerini yakıtın küçük bir kapsülüne ateşleyerek bir patlamayı tetikliyor.
Bu alana ilgili olanlarında bildiği gibi “manyetik” ve “mıknatıs” kelimelerini süper iletken teknolojisiyle yakından ilgili. Bugünlerde bilim dünyasının yoğunlaştığı LK-99 süper iletken iddiası füzyon enerjisi ve reaktör gelişimi açısından son derece önemli. Süper iletkenler, elektrik akımını dirençsiz bir şekilde ileten maddelerdir. Füzyon reaktörleri gibi yüksek enerji ve sıcaklık gerektiren sistemlerde süper iletkenlerin kullanılması, birkaç açıdan önem taşıyor:
Kaynak: Donanimhaber